Revision of Energy from Sun, 05/01/2011 - 13:36

58196 views, rev2
Table of Contents

Lightning is the electric breakdown of air by strong electric fields, which produce a force on charges. When these charges move through a distance, a flow of energy occurs. The electric potential energy in the atmosphere then is transformed into thermal energy, light, and sound, which are other forms of energy. In physics, energy (Ancient Greek: ἐνέργεια energeia "activity, operation") is a quantity that is often understood as the ability a physical system has to dowork on other physical systems. Since work is defined as a force acting through a distance (a length of space), energy is always equivalent to the ability to exert pulls or pushes against the basic forces of nature, along a path of a certain length. The total energy contained in an object is identified with its mass, and energy (like mass), cannot be created or destroyed. When matter (ordinary material particles) is changed into energy (such as energy of motion, or into radiation), the mass of the system does not change through the transformation process. However, there may be mechanistic limits as to how much of the matter in an object may be changed into other types of energy and thus into work, on other systems. Energy, like mass, is a scalar physical quantity. In the International System of Units (SI), energy is measured in joules, but in many fields other units, such as kilowatt-hours and kilocalories, are customary. All of these units translate to units of work, which is always defined in terms of forces and the distances that the forces act through. A system can transfer energy to another system by simply transferring matter to it (since matter is equivalent to energy, in accordance with its mass). However, when energy is transferred by means other than matter-transfer, the transfer produces changes in the second system, as a result of work done on it. This work manifests itself as the effect of force(s) applied through distances within the target system. For example, a system can emit energy to another by transferring (radiating) electromagnetic energy, but this creates forces upon the particles that absorb the radiation. Similarly, a system may transfer energy to another by physically impacting it, but that case the energy of motion in an object, called kinetic energy, results in forces acting over distances (new energy) to appear in another object that is struck. Transfer of thermal energy by heat occurs by both of these mechanisms: heat can be transferred by electromagnetic radiation, or by physical contact in which direct particle-particle impacts transfer kinetic energy. Energy may be stored in systems without being present as matter, or as kinetic or electromagnetic energy. Stored energy is created whenever a particle has been moved through a field it interacts with (requiring a force to do so), but the energy to accomplish this is stored as a new position of the particles in the field—a configuration that must be "held" or fixed by a different type of force (otherwise, the new configuration would resolve itself by the field pushing or pulling the particle back toward its previous position). This type of energy "stored" by force-fields and particles that have been forced into a new physical configuration in the field by doing work on them by another system, is referred to as potential energy. A simple example of potential energy is the work needed to lift an object in a gravity field, up to a support. Each of the basic forces of nature is associated with a different type of potential energy, and all types of potential energy (like all other types of energy) appears as system mass, whenever present. For example, a compressed spring will be slightly more massive than before it was compressed. Likewise, whenever energy is transferred between systems by any mechanism, an associated mass is transferred with it. Any form of energy may be transformed into another form. For example, all types of potential energy are converted into kinetic energy when the objects are given freedom to move to different position (as for example, when an object falls off a support). When energy is in a form other than thermal energy, it may be transformed with good or even perfect efficiency, to any other type of energy, including electricity or production of new particles of matter. With thermal energy, however, there are often limits to the efficiency of the conversion to other forms of energy, as described by the second law of thermodynamics. In all such energy transformation processes, the total energy remains the same, and a transfer of energy from one system to another, results in a loss to compensate for any gain. This principle, the conservation of energy, was first postulated in the early 19th century, and applies to any isolated system. According to Noether's theorem, the conservation of energy is a consequence of the fact that the laws of physics do not change over time. Although the total energy of a system does not change with time, its value may depend on the frame of reference. For example, a seated passenger in a moving airplane has zero kinetic energy relative to the airplane, but non-zero kinetic energy (and higher total energy) relative to the Earth.

History

The word energy derives from the Greek ἐνέργεια energeia, which possibly appears for the first time in the work of Aristotle in the 4th century BC. The concept of energy emerged out of the idea of vis viva (living force), which Gottfried Leibniz defined as the product of the mass of an object and its velocity squared; he believed that total vis viva was conserved. To account for slowing due to friction, Leibniz theorized that thermal energy consisted of the random motion of the constituent parts of matter, a view shared by Isaac Newton, although it would be more than a century until this was generally accepted. In 1807, Thomas Young was possibly the first to use the term "energy" instead of vis viva, in its modern sense. Gustave-Gaspard Coriolis described "kinetic energy" in 1829 in its modern sense, and in 1853, William Rankine coined the term "potential energy". It was argued for some years whether energy was a substance (the caloric) or merely a physical quantity, such asmomentum. William Thomson (Lord Kelvin) amalgamated all of these laws into the laws of thermodynamics, which aided in the rapid development of explanations of chemical processes by Rudolf Clausius, Josiah Willard Gibbs, and Walther Nernst. It also led to a mathematical formulation of the concept of entropy by Clausius and to the introduction of laws of radiant energy by Jožef Stefan. During a 1961 lecture for undergraduate students at the California Institute of Technology, Richard Feynman, a celebrated physics teacher and Nobel Laureate, said this about the concept of energy: There is a fact, or if you wish, a law, governing all natural phenomena that are known to date. There is no known exception to this law—it is exact so far as we know. The law is called the conservation of energy. It states that there is a certain quantity, which we call energy, that does not change in manifold changes which nature undergoes. That is a most abstract idea, because it is a mathematical principle; it says that there is a numerical quantity which does not change when something happens. It is not a description of a mechanism, or anything concrete; it is just a strange fact that we can calculate some number and when we finish watching nature go through her tricks and calculate the number again, it is the same. —The Feynman Lectures on Physics Since 1918 it has been known that the law of conservation of energy is the direct mathematical consequence of the translational symmetry of the quantity conjugate to energy, namely time. That is, energy is conserved because the laws of physics do not distinguish between different instants of time (see Noether's theorem).